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ABSTRACT: Salts containing tetraaryldiphosphine radi-
cal cation 1•+ and dication 12+ have been isolated and
structurally characterized. Radical 1•+ has a relaxed
pyramidal geometry, while dication 12+ prefers a planar,
olefin-like geometry with a two-electron π bond. The
alteration of the geometries of the tetraaryldiphosphine
upon oxidation is rationalized by the nature of the
bonding. The EPR spectrum showed that the spin density
of radical 1•+ is mainly localized on phosphorus atoms,
which is supported by theoretical calculation.

Hydrazine radical cation and dications have been
extensively studied and shown to prefer planar, olefin-

like geometries with a three- or two-electron π bond (Scheme
1).1−3 In contrast, their phosphorus analogues are elusive.

Though diphosphine radical cations (R2PPR2)
•+ have been

studied by theoretical calculation and solution electron
paramagnetic resonance (EPR) spectroscopy,4 they have not
been isolated, and their crystal structures remain unknown. The
dication (R2PPR2)

2+ has not been detected, and its synthesis
becomes a challenge, probably because phosphorus is less likely
to form multiple bonds than carbon or nitrogen.1,5 Very
recently, however, Bertrand et al. stabilized diphosphene radical
cations (RPPR)•+ and dications (RPPR)2+ using carbenes
(Scheme 2),6 which indicates that oxidized species of
diphosphines (R2PPR2) may be stabilized and isolated with
suitable ligands and counterions.
By using weakly coordinating anions,7 we recently succeeded

in stabilizing aniline, benzidine, anthracene, and triarylphos-
phine radical cations.8 These resultsespecially the isolation of

triarylphosphine radical cations8aencouraged us to investigate
the oxidation of other phosphine systems. We herein report
isolation, characterization, and crystal structures of the radical
cation and dication of a tetraaryldiphosphine.
Diphosphine 1 was synthesized by the reaction of Trip2PCl

(Trip = 2,4,6-triisopropylphenyl) with sodium (Scheme 3) in

stead of Mg used in the literature.9 The cyclic voltammetry of 1
in CH2Cl2 at room temperature with nBu4NPF6 as a supporting
electrolyte showed two well-defined reversible oxidation waves
(Figure 1), indicating that radical cation 1•+ and dication 12+

are stable under these conditions. Upon one-electron oxidation
with Ag[Al(ORMe)4] (ORMe = OC(CF3)2Me)10 in CH2Cl2, 1
was converted to green radical cation 1•+ in a high yield
(Scheme 3). The EPR spectra (Figure 2) of 1•+[Al(ORMe)4]

−

in CH2Cl2 at 273 and 77 K show typical signals of
tetraaryldiphosphine radical cations (g = 2.009, a(31P) = 17.6
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Figure 1. Cyclic voltammogram of 1 (1 × 10−3 M) in CH2Cl2,
containing 0.1 M nBu4NPF6, measured at 100 mV s−1 at 20 °C.
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mT in solution, g∥ = 2.004, a∥(
31P) = 28.7 mT, g⊥ = 2.014,

a⊥(
31P) = 14.0 mT in frozen solution).4c,d The ratio of isotropic

and anisotropic hyperfine constants between the radical and
phosphorus atoms suggests that ∼38% and ∼4% of the
unpaired electron is localized on the 3p (P) and 3s (P) orbitals
of each P in 1•+, respectively, indicating the phosphorus centers
retain a degree of bending.4c,d Upon two-electron oxidation
with Ag+ in CH2Cl2, 1 was converted to red dication 12+

(Scheme 3).11 Alternatively, the dication can be obtained by a
one-electron oxidation of 1•+. The 31P NMR spectrum of 12+

shows one single signal at 168.82 ppm. Both the radical cation
and dication are further characterized by elemental analysis and
UV absorption spectroscopy (λmax ≈ 670 nm for 1•+ and 530
nm for 12+, Figure S1 in the Supporting Information).
Crystals suitable for X-ray crystallographic studies were

obtained by cooling solutions of 1•+ and 12+ in CH2Cl2.
12

Although the structure of the precursor 1 was already known9

and not in doubt, we redetermined its structure at 123 K to
enable an isothermal comparison. The structures of 1•+ and 12+

are illustrated as stereoviews in Figure 3. A list of their

important structural parameters, as well as those of 1, is given in
Table 1. The data show that removal of electrons from
tetraarylphosphine systems has considerable effects on their
ground-state structures. The total of three bond angles to
phosphorus becomes larger from the precursor 1 to radical
cation 1•+ to dication 12+. Consequently, 1 becomes less
pyramidal upon one-electron removal and completely flattened
upon loss of the second electron. Pyramidal 1•+ is in contrast
with planar hydrazine radical cations (R2NNR2)

•+,2 while
planar, olefin-like 12+ is similar to hydrazine dications
(R2NNR2)

2+.3 The P−C and P−P bond lengths become

shorter from 1 to 1•+ to 12+. The P−P length of 1•+ (2.136(5)
Å) is between a P−P double bond (∼2.02 Å)13 and a P−P
single bond (∼2.20 Å), while dication 12+ clearly shows a P−P
double bond (2.021(2) Å).
To explain the experimental results, we carried out some

calculations for the model diphosphine (Dipp)2PP(Dipp)2 (2)
(Dipp = 2,6-diisopropylphenyl) and its oxdized species 2•+ and
22+.14 Full geometry optimizations were performed at the
(U)HF/6-31G(d) level, and the obtained stationary points
were characterized by frequency calculations. Molecular orbitals
and spin density were calculated at the (U)B3LYP/6-31G(d)
level. The calculated structural parameters of 2 and its oxidized
species are in good agreement with those of X-ray crystal
structures of 1, 1•+, and 12+ (Table 1). Consistent with the
experimental data, the P−C and P−P distances become shorter,
while the total of angles to phosphorus becomes larger from the
neutral 2 to radical cation 2•+ and dication 22+. The tendency of
alteration of the bond lengths and bond angles can be
rationalized by the nature of the bonding. As shown in Figure 4,
the HOMO of 2 is mainly π*(P2), i.e., a lone pair localized

Figure 2. EPR spectra of 1 × 10−3 M 1•+[Al(ORMe)4]
− in CH2Cl2

solution at (a) 273 and (b) 77 K.

Figure 3. Thermal ellipsoid (50%) drawings of (a) 1•+ and (b) 12+

(hydrogen atoms and Pri groups are omitted for clarity). Selected
bond length (Å) and angle (deg): in 1•+, P1−P1′ 2.136(5), C1−P1
1.832(5), C1−P1 1.844(5), C1−P1′ 1.831(5), C1−P1′ 1.831(5), C1−
P1−C1 127.4(2), C1−P1−P1′ 104.3(2), C1−P1−P1′ 103.8(2), C1−
P1′−C1 128.4(2), C1−P1′−P1 103.1(2), C1−P1′−P1 103.5(2); in
12+, P1−P2 2.021(2), C1−P1 1.821(5), C16−P1 1.812(5), C31−P2
1.820(5), C46−P2 1.816(5), C1−P1−P2 116.3(1), C1−P1−C16
125.9(2), C16−P1−P2 117.6(1), C31−P2−P1 118.9(1), C31−P2−
C46 124.0(2), C46−P2−P1 116.6(1).

Table 1. Experimental and Calculated Structural Parameters
(Average) for Tetraaryldiphosphines and Their Cationic
Species

Experimental

1 1•+ 12+

P−P(Å) 2.223(1) 2.136(5) 2.021(2)
C−P(Å) 1.888(3) 1.834(5) 1.817(5)
∑ angles to P (deg) 318.3(1) 335.2(2) 359.6(2)

Calculated

2 (C2) 2•+ (C2) 22+ (C2)

P−P(Å) 2.273 2.172 2.004
C−P(Å) 1.897 1.858 1.818
∑ angles to P (deg) 324.1 340.9 359.9

Figure 4. Selected molecular orbitals for 2, 2•+, and 22+. The
eigenvalues of the molecular orbitals are given in a.u.
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orbital, which is an out-of-phase combination of p orbitals of
phosphorus atoms with some s orbital character. In contrast,
the π*(P2) orbital in 22+ is a combination of almost pure 3p
orbitals of the phosphorus atoms with a small contribution
from carbon atoms. The π*(P2) orbital in 2 (HOMO) is
doubly occupied, but it is singly occupied in 2•+ (SOMO) and
empty in 22+ (LUMO). The decrease in the occupation of the
π*(P2) orbital leads to a shortening of the P−P bond, and the
enhanced p-character causes flattening of geometries.4c,d The
shortening of the P−C bond length is associated with the
change of conjugation, which is n−π conjugation in 2, but π−π
conjugation in 22+, and a mix of n−π and π−π conjugation in
2•+. The calculated spin density of 2•+ is mainly localized on
phosphorus atoms (0.43e ×2), and that for any other atoms is
less than 0.02e, which agrees well with the experimental EPR
spectrum.
Schoeller and co-workers have reported that one-electron

oxidation of diphosphines (R2P-PR′2) led to cleavage of the P−
P bond, followed by formation of the phosphenium systems
(R2P

+ and R′2P+) and re-formation of diphosphines (R2P-PR2
and R′2P-PR′2). The fact that a similar phenomenon does not
occur in the current work probably is due to different electronic
properties of the substituents.15 However, a deep under-
standing of the difference needs further investigation.
The isolation of stable radicals16 and 1,2-dications1b of

heavier main-group elements is of high current interest. A few
phosphorus radicals have been structurally characterized in the
gas phase17 or in the solid state.6,8a,18 We herein have described
the stabilization and structural characterization of radical cation
1•+ and dication 12+ of a tetraaryldiphosphine. Investigation on
the reactivity of these oxidized species is under way.
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